Skip to content

Category: Excerpt

The Science of Well-Being

好几年没有在 Coursera 上听课了。今天是偶然的机会,我在重新听「好和弦」讲流行抒情乐钢琴伴奏之后,又去这个视频里的主唱 JR 的 YouTube 频道看到他在三天前更新的视频介绍了这个耶鲁大学最受欢迎的课程The Science of Well-Being, by Laurie Santos

以下摘自《纽约时报》今年 1 月底的报道:

Students have long requested that Yale offer a course on positive psychology, according to Woo-Kyoung Ahn, director of undergraduate studies in psychology, who said she was “blown away” by Dr. Santos’s proposal for the class.

本科生心理研究主任 Woo-Kyoung Ahn 表示,长期以来,学生们一直要求耶鲁开设一门积极心理学课程。她说,桑托斯博士提出开设这门课程时,她「特别高兴」。

Administrators like Dr. Ahn expected significant enrollment for the class, but none anticipated it to be quite so large. Psychology and the Good Life, with 1,182 undergraduates currently enrolled, stands as the most popular course in Yale’s 316-year history. The previous record-holder — Psychology and the Law — was offered in 1992 and had about 1,050 students, according to Marvin Chun, the Yale College dean. Most large lectures at Yale don’t exceed 600.

安博士等管理人员预计这门课的选修人数会很多,但谁也没预料到会这么多。「心理学与美好生活」这门课目前有 1182 名本科生选修,成为耶鲁大学 316 年历史上最受欢迎的课程。耶鲁学院的院长 Marvin Chun 表示,此前的纪录保持者是 1992 年推出的「心理学和法律」课程,约有 1050 名学生选修。耶鲁的大多数大型课程的选修人数都不超过 600 人。

Yale’s Most Popular Class Ever: Happiness
耶鲁史上最受欢迎课程:快乐

Google 了一下发现这门课已经上线 Coursera(《纽约时报》今年 1 月底报道这门课的时候还只是说很快就会上线)。最近几年觉得国内上 Coursera 的网络状况真的不太好,当然我也不是随时都在测试,毕竟试过几次感觉很糟糕之后就不会太有动力去听课了。但今天的网络效果很好,不知道是不是最近用了另一家代理服务……

我自己对积极心理学(positive psychology)一直比较感兴趣,但也有好几年没有继续阅读这方面的内容了,希望这门课能带给我新的收获吧,积极心理学对个人幸福感的研究在我的哲学里是一块非常重要的基础内容。

附一封 Santos 老师的欢迎信:

Dear Learner,

Congratulations on taking part in this journey! Over the next several weeks, we’ll explore what new results in psychological science teach us about how to be happier, how to feel less stressed, and how to flourish more. We’ll then have a chance to put these scientific findings into practice by building the sorts of habits that will allow us to live a happier and more fulfilling life.

In Spring 2018, I taught “Psychology and the Good Life” for the first time. I created this Yale course because I was worried about the levels of student depression, anxiety, and stress that I was seeing as a Professor and Head of College at Yale. I originally developed this course to teach Yale students how the science of psychology can provide important hints about how to make wiser choices and how to live a life that’s happier and more fulfilling. Since I’m not an expert on positive psychology, I began by learning more about this topic, diving into the work of pioneering scientists like Martin SeligmanEd DienerBarbara FredricksonSonja LyubomirskyMihaly CsikszentmihalyiDaniel GilbertRobert Emmons, and others. I also learned more about work in social psychology and behavior change, including work by scholars such as Liz DunnMike NortonNick EpleyGabriele Oettingen, and others. The Yale course was my attempt at synthesizing work in positive psychology along with the science of behavior change. My goal was to present these scientific findings in a way that made it clear how this science could be applied in people’s daily lives.

When I first developed the class, I had no idea it would become the most popular class ever taught at Yale University. The Yale class was featured in both the national and international news media, and I was flooded with requests from people around the world to find a way to share the content of this Yale class more broadly.

This Coursera class is an attempt to do just that. My goal is to share the insights from that popular Yale class with learners far beyond Yale. To make the lectures feel more intimate, we filmed at my home in one of Yale’s residential colleges with a small group of Yale students in the audience. I hope you’ll enjoy this more personal format, which allows you to hear the sorts of questions Yale students had about the material and how they applied the science in their daily lives. We understand that many of you taking the course are not currently college students, but we hope you see yourselves as though you are part of this virtual classroom.

During this course, you’ll have the opportunity to enhance your own well-being by implementing a few simple research-based methods to your own life.

I am thrilled to share this information with a wider audience. As you go through the lessons please share your feedback with the course team! You can direct item-specific feedback via content flags and general course feedback in the Discussion Forums or in the post-course survey when you complete the course.

Sincerely,
Laurie

Causal Revolution: 描述因果的数学语言

To appreciate the depth of this gap, imagine the difficulties that a scientist would face in trying to express some obvious causal relationships—say, that the barometer reading B tracks the atmospheric pressure P. We can easily write down this relationship in an equation such as B = kP, where k is some constant of proportionality. The rules of algebra now permit us to rewrite this same equation in a wild variety of forms, for example, P = B/k, k = B/P, or B–kP = 0. They all mean the same thing—that if we know any two of the three quantities, the third is determined. None of the letters k, B, or P is in any mathematical way privileged over any of the others. How then can we express our strong conviction that it is the pressure that causes the barometer to change and not the other way around? And if we cannot express even this, how can we hope to express the many other causal convictions that do not have mathematical formulas, such as that the rooster’s crow does not cause the sun to rise?

My college professors could not do it and never complained. I would be willing to bet that none of yours ever did either. We now understand why: never were they shown a mathematical language of causes; nor were they shown its benefits. It is in fact an indictment of science that it has neglected to develop such a language for so many generations. Everyone knows that flipping a switch will cause a light to turn on or off and that a hot, sultry summer afternoon will cause sales to go up at the local ice-cream parlor. Why then have scientists not captured such obvious facts in formulas, as they did with the basic laws of optics, mechanics, or geometry? Why have they allowed these facts to languish in bare intuition, deprived of mathematical tools that have enabled other branches of science to flourish and mature?

Part of the answer is that scientific tools are developed to meet scientific needs. Precisely because we are so good at handling questions about switches, ice cream, and barometers, our need for special mathematical machinery to handle them was not obvious. But as scientific curiosity increased and we began posing causal questions in complex legal, business, medical, and policy-making situations, we found ourselves lacking the tools and principles that mature science should provide.

Belated awakenings of this sort are not uncommon in science. For example, until about four hundred years ago, people were quite happy with their natural ability to manage the uncertainties in daily life, from crossing a street to risking a fistfight. Only after gamblers invented intricate games of chance, sometimes carefully designed to trick us into making bad choices, did mathematicians like Blaise Pascal (1654), Pierre de Fermat (1654), and Christiaan Huygens (1657) find it necessary to develop what we today call probability theory. Likewise, only when insurance organizations demanded accurate estimates of life annuity did mathematicians like Edmond Halley (1693) and Abraham de Moivre (1725) begin looking at mortality tables to calculate life expectancies. Similarly, astronomers’ demands for accurate predictions of celestial motion led Jacob Bernoulli, Pierre-Simon Laplace, and Carl Friedrich Gauss to develop a theory of errors to help us extract signals from noise. These methods were all predecessors of today’s statistics.

Ironically, the need for a theory of causation began to surface at the same time that statistics came into being. In fact, modern statistics hatched from the causal questions that Galton and Pearson asked about heredity and their ingenious attempts to answer them using cross-generational data. Unfortunately, they failed in this endeavor, and rather than pause to ask why, they declared those questions off limits and turned to developing a thriving, causality-free enterprise called statistics.

This was a critical moment in the history of science. The opportunity to equip causal questions with a language of their own came very close to being realized but was squandered. In the following years, these questions were declared unscientific and went underground. Despite heroic efforts by the geneticist Sewall Wright (1889–1988), causal vocabulary was virtually prohibited for more than half a century. And when you prohibit speech, you prohibit thought and stifle principles, methods, and tools.

Readers do not have to be scientists to witness this prohibition. In Statistics 101, every student learns to chant, “Correlation is not causation.” With good reason! The rooster’s crow is highly correlated with the sunrise; yet it does not cause the sunrise.

Unfortunately, statistics has fetishized this commonsense observation. It tells us that correlation is not causation, but it does not tell us what causation is. In vain will you search the index of a statistics textbook for an entry on “cause.” Students are not allowed to say that X is the cause of Y—only that X and Y are “related” or “associated.”

… I hope with this book to convince you that data are profoundly dumb. Data can tell you that the people who took a medicine recovered faster than those who did not take it, but they can’t tell you why. Maybe those who took the medicine did so because they could afford it and would have recovered just as fast without it.

Over and over again, in science and in business, we see situations where mere data aren’t enough. Most big-data enthusiasts, while somewhat aware of these limitations, continue the chase after data-centric intelligence, as if we were still in the Prohibition era.

As I mentioned earlier, things have changed dramatically in the past three decades. Nowadays, thanks to carefully crafted causal models, contemporary scientists can address problems that would have once been considered unsolvable or even beyond the pale of scientific inquiry. For example, only a hundred years ago, the question of whether cigarette smoking causes a health hazard would have been considered unscientific. The mere mention of the words “cause” or “effect” would create a storm of objections in any reputable statistical journal.

Even two decades ago, asking a statistician a question like “Was it the aspirin that stopped my headache?” would have been like asking if he believed in voodoo. To quote an esteemed colleague of mine, it would be “more of a cocktail conversation topic than a scientific inquiry.” But today, epidemiologists, social scientists, computer scientists, and at least some enlightened economists and statisticians pose such questions routinely and answer them with mathematical precision. To me, this change is nothing short of a revolution. I dare to call it the Causal Revolution, a scientific shakeup that embraces rather than denies our innate cognitive gift of understanding cause and effect.

Side by side with this diagrammatic “language of knowledge,” we also have a symbolic “language of queries” to express the questions we want answers to. For example, if we are interested in the effect of a drug (D) on lifespan (L), then our query might be written symbolically as: P(L|do(D)). In other words, what is the probability (P) that a typical patient would survive L years if made to take the drug? This question describes what epidemiologists would call an intervention or a treatment and corresponds to what we measure in a clinical trial. In many cases we may also wish to compare P(L|do(D)) with P(L |do(not-D)); the latter describes patients denied treatment, also called the “control” patients. The do-operator signifies that we are dealing with an intervention rather than a passive observation; classical statistics has nothing remotely similar to this operator.

We must invoke an intervention operator do(D) to ensure that the observed change in Lifespan L is due to the drug itself and is not confounded with other factors that tend to shorten or lengthen life. If, instead of intervening, we let the patient himself decide whether to take the drug, those other factors might influence his decision, and lifespan differences between taking and not taking the drug would no longer be solely due to the drug. For example, suppose only those who were terminally ill took the drug. Such persons would surely differ from those who did not take the drug, and a comparison of the two groups would reflect differences in the severity of their disease rather than the effect of the drug. By contrast, forcing patients to take or refrain from taking the drug, regardless of preconditions, would wash away preexisting differences and provide a valid comparison.

Mathematically, we write the observed frequency of Lifespan L among patients who voluntarily take the drug as P(L|D), which is the standard conditional probability used in statistical textbooks. This expression stands for the probability (P) of Lifespan L conditional on seeing the patient take Drug D. Note that P(L|D) may be totally different from P(L|do(D)). This difference between seeing and doing is fundamental and explains why we do not regard the falling barometer to be a cause of the coming storm. Seeing the barometer fall increases the probability of the storm, while forcing it to fall does not affect this probability.

Judea Pearl. 2018. The Book of Why

基因演化视角与个体感受视角

The currency of evolution is neither hunger nor pain, but rather copies of DNA helixes. Just as the economic success of a company is measured only by the number of dollars in its bank account, not by the happiness of its employees, so the evolutionary success of a species is measured by the number of copies of its DNA. If no more DNA copies remain, the species is extinct, just as a company without money is bankrupt. If a species boasts many DNA copies, it is a success, and the species flourishes. From such a perspective, 1,000 copies are always better than a hundred copies. This is the essence of the Agricultural Revolution: the ability to keep more people alive under worse conditions.

Yet why should individuals care about this evolutionary calculus? Why would any sane person lower his or her standard of living just to multiply the number of copies of the Homo sapiens genome? Nobody agreed to this deal: the Agricultural Revolution was a trap.

如果要衡量某种物种演化成功与否,评断标准就在于世界上其 DNA 螺旋的拷贝数的多寡。这很类似于货币的概念,就像今天如果要说某家公司行不行,我们看的是它的市值有多少钱,而不是它的员工开不开心;物种的演化成功,看的就是这个物种 DNA 拷贝数在世界上的多寡。如果世界上不再有某物种的 DNA 拷贝,就代表该物种已经绝种,也等于公司没有钱而宣告倒闭。而如果某个物种还有许多个体带着它的 DNA 拷贝存在于这个世上,就代表着这个物种演化成功、欣欣向荣。从这种角度看来,1000 份 DNA 拷贝永远都强过 100 份。这正是农业革命真正的本质:让更多的人却以更糟的状况活下去。

但是,身为个人,为什么要管这种演化问题?如果有人说,为了「增加智人基因组在世界上的拷贝数」,希望你降低自己的生活水平,你会同意吗?没有人会同意这笔交易。简单说来,农业革命就是一个陷阱。

The pursuit of an easier life resulted in much hardship, and not for the last time. It happens to us today. How many young college graduates have taken demanding jobs in high-powered firms, vowing that they will work hard to earn money that will enable them to retire and pursue their real interests when they are thirty-five? But by the time they reach that age, they have large mortgages, children to school, houses in the suburbs that necessitate at least two cars per family, and a sense that life is not worth living without really good wine and expensive holidays abroad. What are they supposed to do, go back to digging up roots? No, they double their efforts and keep slaving away.

种种想让生活变得轻松的努力,反而给人带来无穷的麻烦;而且这可不是史上的最后一次。就算今天,仍然如此。有多少年轻的大学毕业生投身大企业、从事各种劳心劳力的工作,发誓要努力赚钱,好在 35 岁就退休,去从事他们真正有兴趣的事业?但等他们到了 35 岁,却发现自己背着巨额贷款,要付子女的学费,要养在高级住宅区的豪宅,每家得有两部车,而且觉得生活里不能没有高级红酒和去国外的假期。他们该怎么做?他们会放下一切,回去野外采果子挖树根吗?当然不可能,而是加倍努力,继续把自己累得半死。

Unfortunately, the evolutionary perspective is an incomplete measure of success. It judges everything by the criteria of survival and reproduction, with no regard for individual suffering and happiness. Domesticated chickens and cattle may well be an evolutionary success story, but they are also among the most miserable creatures that ever lived. The domestication of animals was founded on a series of brutal practices that only became crueler with the passing of the centuries.

不幸的是,演化观点并不是唯一判断物种成功与否的标准。它一切只考虑到生存和繁殖,而不顾个体的痛苦或幸福。虽然就演化而言,驯化的鸡和牛很可能是最成功的代表,但它们过的其实是生物有史以来最惨的生活。动物的驯化是建立在一系列的野蛮作为上,而且随着时间的前行,残忍程度只增不减。

Yet from the viewpoint of the herd, rather than that of the shepherd, it’s hard to avoid the impression that for the vast majority of domesticated animals, the Agricultural Revolution was a terrible catastrophe. Their evolutionary ‘success’ is meaningless. A rare wild rhinoceros on the brink of extinction is probably more satisfied than a calf who spends its short life inside a tiny box, fattened to produce juicy steaks. The contented rhinoceros is no less content for being among the last of its kind. The numerical success of the calf’s species is little consolation for the suffering the individual endures.

然而,如果从牛羊的观点而非牧者的观点来看农业革命,就会发现对绝大多数的家畜来说,这是一场可怕的灾难。这些演化的「成功」是没有意义的。就算是濒临绝种的野生犀牛,比起被关在小格子里变肥、等着成为鲜美牛排的肉牛,日子应该还是好过得多。虽然自己的物种即将灭绝,但这丝毫不会影响那头野生犀牛对自己生活的满意程度。相较之下,肉牛这个物种虽然在数量上大获成功,却完全无法安慰那些单独个体所承受的痛苦。

Yuval Noah Harari. 2011. Sapiens: A Brief History of Humankind
尤瓦尔·赫拉利《人类简史:从动物到上帝》 林俊宏 译

中国在编《四库全书》的时候,西方在做什么?

听余秋雨的这个课程改变了以前对他的一些刻板印象。

错管错,对管对。《四库全书》总的说来是我们应该承认应该仰望,而且应该保护这个《四库全书》,从它的实体书籍到它的名誉都应该保护。但是,我作为现代文化人,总是忍不住要问一句,因为世界已经走到了 18 世纪,而且在编《四库全书》的时候已经走到了 18 世纪的后期。从文艺复兴的时候醒来的欧洲,醒来的西方,它究竟是怎么样了呢?马可波罗和利玛窦的故乡,它到底发生了什么呢?我们可能不太清楚。

所以我一直在关注一件事,就是在我们编《四库全书》的这十年,在中国最优秀的知识分子集中在北京的这十年,西方发生了什么?我认真地查了一下,一查,平心而论,我稍稍有点紧张,就在编《四库全书》的这十年,瓦特制成了联动式的蒸汽机,德国建成了首条铁铸的铁轨,英国建成了首座铁桥,美国的科学院在波斯顿成立,法国的一对兄弟发明了热气球,实现了第一次自由飞行,卡文迪许还证明了水是化合物等等,都是在这十年当中发生的。

也许有人会说,那你说的都是物质科学,西方确实走到了我们前面,我们中国重视的精神领域也是这样吗?好像也不太对。因为就在这十年当中,创立《人性论》的休谟,创立《国富论》的亚当·斯密,创立《社会契约论》的卢梭,都完成了自己一系列重要的学说。而且伏尔泰、莱辛、歌德、孔迪亚克也都发表了自己关键性的著作。

这一对比,我们就会对《四库全书》表示崇敬的时候,不能不关心一下文化导向的差别了。我们在搜集古代文献,他们在探索现代的未知;我们在注视,他们在设计;我们在抄录,他们在实验;我们在缅怀,他们在创造。这里出现了两个完全不同的文化方向。

半个多世纪以后,一场近距离的力量对比就发生了,庄严的中国文化不能不低头垂泪了。那个时候我们会出现很多有关中国文化的话语,有的时候为了挽救中国文化,出现了各种各样的激进话语和争夺话语,但是结论确实很简单,就是文化要继续走下去,就是必须是创新、创新、再创新。

节选自 余秋雨 中国文化必修课 第 70 集 《四库全书》:规模最大的文化选择

 

ラーンの幸福論

(クトリ・ノタ・セニオリス)
幸せになるって、どういうことだ思う?

(ラーントルク・イツリ・ヒストリア)
そもそも、幸せというものは人それぞれです。
食べていられればいいという人もいる。
本があればいいという人もいる。
全力で生きているということだけが重要だという人もいる。
何かを超えた瞬間にだけを充足できる人もいる。
誰かが幸せであれば自分も幸せだという人もいれば、
はた迷惑のことに、その真逆の人もいる。
でも、そのほとんどの人たちは自覚がないんです。
何が自分の幸せに繋がるかを知らない。
なのに口を揃えて幸せになりたいと繰り返す。
そういう人たちは幸せに気付くことはできても、
幸せになることはできません。
大切なのは自分の心から目を逸らさないことだ。

枯野瑛
終末なにしてますか?
忙しいですか?
救ってもらっていいですか?
#11 どうか、忘れないで

写作与说话

闭门写作时间长了,会忘记写作本来是在交流。有的学者,台上念稿子的时候,满嘴听不懂的术语、连不上的句子,会议间歇,听他用普普通通的话重述他的观点,居然意思还挺明白条理蛮清楚的,吓你一跳。写作到了这个份儿上,自然就会有人出来提倡浅显,语言学家提倡尤力。记得吕叔湘曾说,最好是这样——有人在隔壁朗读一篇文章,你听着以为他是在对谁说话。

陈嘉映. 2012. 价值的理由. 第 73 页

创作者怎样对待前人作品

在网络上我们经常看到一些创作者,自己发明了一套理论,希望得到更多人认可。这些人往往被称作民间科学家、民间哲学家。本来「民间」只是个中性称谓,只是表达不是职业选手、不是科班出身。但因为荒唐的民间理论太多,所以民科、民哲就变成了具有讽刺意味的贬义称谓。这时候接受过专业训练的人就经常引用杨绛先生对某位青年的回信:「你的问题在于读书太少而想得太多。」(杨绛这句话究竟是别人杜撰的故事还是确有其事,我没有查到。有人说是出自《我们仨》或者《走在人生边上》,从我对电子文本的检索结果来看,没有发现这两本书有类似的话。)

但我每次看到这种回应还是觉得不太对。至少单就哲学问题的讨论来说,读书多少并不是最根本的判断标准。最简单的逻辑是,对先秦时代的思想家、古希腊的哲学家来说,可读的书很少,至少后世那么多大思想家的书,他们是读不到的。即便如此,第一代思想家的作品仍然被今人认可,至少我们不会认为那是垃圾而不去阅读。这说明书读得少,也可以写出好的作品,关键还在作者的其他努力。我认为判断作品好坏关键还在作品内容本身,就哲学作品来说关键在于表述清晰、推理严密或者视角新颖,这些标准可以清洗很多荒唐的民哲作品,而未必把原因归结于他们读书太少。

最近我在喜马拉雅 FM 听余秋雨的中国文化必修课,最近的一课讲到唐诗,然后讲到了优秀的创作者不应该背太多诗的问题。我以前也表达过类似的想法。虽然写诗和写哲学、写思想不是一回事,但在如何面对前人作品的问题上,也有很多相通之处。读前人的哲学太多、太认真,一定会损害自己的创造力,但前人的作品很多时候也能启发自己,并且为了避免重新发明轮子也要对前人的成就有所了解,所以这是一个需要自己小心权衡的事情,操作起来也很困难。只不过,附庸风雅的人要多过认真学习的人,认真学习继而乐于为前人作品代言的人又多过愿意自己输出原创内容的人,所以这里的困难似乎并没有得到足够多的关注。

下面就是余秋雨这节音频课程的选段:

唐代写诗的风气很盛,也有一些著名的诗人和作品被传抄和传唱,但是由于当时缺少我们现代意义上的传媒和出版机制,流播(流传和传播)情况和我们的想象很不相同。更重要的是,真正处于良好创作状态的时代,一定不会被前人和他人已经有的作品所堵塞。这就像一个生气勃勃的运动现场,一定不会是堆满陈旧物质的仓库。

这里边牵扯到一个很有趣的创作哲学。创作者们当然也会吟诵一些优秀的作品,作为自己的入门修养。但大家心里明白,优秀作品一旦产生,就变成了一种不可被别人介入的凝结体,它已经占据了特定的表达方式,剥夺了别人再度运用这种方式的权利。一个人背诵别人的诗,并不是提醒自己应该怎么写,而是提醒自己不应该再这么写。而且别人写的越好,知道的人越多,自己就越应该躲避。既然是这样,那么一个处于良好创作状态下的诗人,怎么可能被许许多多「不应该」挡住自己的路呢?因此,他们一般来说总是不愿意读得太多、背得太多,读得太多的一定是创作才华比较缺少的群体,或者是创造思维比较僵化的时代。

那么你要问优秀的创作者会读一些什么呢?那我告诉你,他们读山水、读天地、读人心、读自己。其实又岂止唐代是这样?在这里我要趁这个机会对年轻的朋友说几句话。如果现在老师和家长要你背诵一些古诗,这个首先应该肯定,是一件好事。因为这会让你们领略古代诗人读山水、读天地、读人心、读自己的美好成果,让我们的目光和情怀获得一种古典主义的陶冶。但是,如果老师和家长在背诵古诗的数量上对你们提出了过分的要求,甚至于要你们到外面参加各种比赛,你们就应该警惕了。这是因为古诗多得没完没了,而你的青春岁月却具有一去不返的珍贵。你陷入背诵之中的十七岁的夏天,再也不会回来;你消磨于古代语文迷宫当中的二十岁、二十一岁、二十二岁的大好岁月,再也不会回来。

其实我们可以让大家游戏般地回想一下,你和一些同学一起结伴出去游玩的时候,其中有一位同学他到任何一个地方,都能背出与这儿的风景有一点点近似的古诗,大家感觉怎么样?我想开始大家一定会觉得佩服,很快大家会觉得他不合时宜,影响了今天无拘无束的心情,接下来就会觉得他太显摆了,在同学当中造成了一种居高临下的不公平,最后大家都不想跟他玩了。

那么我就要走到这位被大家抛弃了的孤独的同学面前,劝他几句。我会这么说:如果你的真的热心于诗,那么请记住,你的内心深处一定有一个地方隐藏着诗性人格的小角落,你应该把它挖掘出来,它对你来说比五百首古诗都更重要。一旦挖出来了,你今后的人生将充满诗意。如果你想亲自动手写几句诗,那就更加不要对别人的作品倒背如流了。就好像你如果有志于做一名好的厨师,那就要一次次亲自地调味、亲自调节火候,而不要站在饭店门口,大声背诵这种城市里边上百家餐厅的长长的菜谱。谁都知道,能够把别人的菜谱背诵得抑扬顿挫、声情并茂、一字不差的,一定不是好厨师。

节选自 余秋雨 中国文化必修课 第 27 集 从陵墓到唐诗:唐朝的诗人情怀

六个艾玛的自述与反驳

上次租的 Ethics 这本导论(Gensler, 2017),前两章的六节内容分别写了六种道德观,每章的开头都用一个虚拟的艾玛(Ima)来讲述自己的观点,感觉这种形式还是挺有意思的,有机会可能把这部分翻译成中文。人名的翻译就很逗:

艾玛·瑞拉提维斯特 (Ima Relativist)
艾玛·撒布捷克提维斯特 (Ima Subjectivist)
艾玛·苏帕内恰里斯特 (Ima Supernaturalist)
艾玛·因提乌星尼斯特 (Ima Intuitionist)
艾玛·伊谋提维斯特 (Ima Emotivist)
艾玛·普瑞斯古瑞普提维斯特 (Ima Prescriptivist)

六个艾玛的自述与反驳。

Harry Gensler, 2017, Ethics: A Contemporary Introduction (3rd edition).

子供が見た世界の体育授業

最近在看《天声人语集萃》,以免把日语阅读能力和背过的单词语法都丢了。

「天声人语」是『朝日新聞』头版的固定栏目,已经有百年历史,据说文字水准很高。外研社出的《天声人语集萃》系列是对这些文章的选编,有注音、单词讲解、例句和全文翻译。感觉很适合用零碎时间翻看。

今天看到的这篇讲孩子们眼中的国外体育课,作者希望以此改善日本的传统、单一的体育教学。比如波斯湾的岛国巴林(Bahrain)体育课会教穿着衣服游泳,瑞士会教怎样长时间游泳,感觉这样的课程更加实用。

……

日本でも、もっと実用的なことを教えたらどうか、という感想が多い。バーレーンでの着衣のままの水泳練習。スイスでも着衣水泳のほか、長時間水泳や人命救助を習った。米国での救助訓練では、ズボンを浮袋に利用することも覚えた。米国には、女性の護身の勉強もある。

社会ダンスを学ばせるのは、ドイツ、カナダの中学だ。楽しかった。カナダから帰った女子生徒は、なぜダンスを教えるのだろうか、と考える。社会での付き合いの仕方に即している、そして自然な男女交際をおしえようとしたのだ。

様々な体験を『子供が見た世界の体育授業』という本にまとめた国際基督教大学高校の和田雅史教諭は,画一的、保守的な日本の体育授業に参考になる、と言っている。

1992年1月27日